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Abstract Although voltage-gated sodium channel

(VGSC) activity, upregulated significantly in strongly

metastatic human breast cancer cells, has been found to

potentiate a variety of in vitro metastatic cell behaviors, the

mechanism(s) regulating channel expression/activity is not

clear. As a step toward identifying possible serum factors

that might be responsible for this, we tested whether

medium in which fetal bovine serum (FBS) was substituted

with a commercial serum replacement agent (SR-2),

comprising insulin and bovine serum albumin, would

influence the VGSC-dependent in vitro metastatic cell

behaviors. Human breast cancer MDA-MB-231 cells were

used as a model. Measurements of lateral motility, trans-

verse migration and adhesion showed consistently that the

channel’s involvement in metastatic cell behaviors depen-

ded on the extracellular biochemical conditions. In normal

medium (5% FBS), tetrodotoxin (TTX), a highly specific

blocker of VGSCs, suppressed these cellular behaviors, as

reported before. In contrast, in SR-2 medium, TTX had

opposite effects. However, blocking endogenous insulin/

insulin-like growth factor receptor signaling with AG1024

eliminated or reversed the anomalous effects of TTX.

Insulin added to serum-free medium increased migration,

and TTX increased it further. In conclusion, (1) the bio-

chemical constitution of the extracellular medium had a

significant impact upon breast cancer cells’ in vitro meta-

static behaviors and (2) insulin, in particular, controlled the

mode of the functional association between cells’ VGSC

activity and metastatic machinery.
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Introduction

The importance of the chemical constitution of the tumor

environment for carcinogenesis and disease progression

has frequently been emphasized, more recently in relation

to gene expression and stem cells (e.g., Liotta and Kohn

2001; Creighton et al. 2003; Haslam and Woodward 2003;

Melillo and Semenze 2006; Postovit et al. 2006; Langley

and Fidler 2007; Eccles and Welch 2007; Tysnes and

Bjerkvig 2007; Nakamura et al. 2007; Gatenby and Gilles

2008). Furthermore, serum levels of biochemicals are

routinely used as cancer markers (e.g., Rodriguez-Pineiro

et al. 2006; Boelaert et al. 2006; Tas et al. 2006). In vivo,

cancer cells occupy dynamic, interactive surroundings,

potentially diverse in their biochemistry and cellular

makeup, including reactive stroma and blood vessels

(Weigelt, Peterse and van’t Veer 2005; Fidler 2003; Tlsty

and Coussens 2006). Paget (1889) originally proposed the

seminal ‘‘seed and soil’’ hypothesis to explain the non-

random patterns of metastases (Witz and Levy-Nissenbaum

2006). The concept that metastasis results from cancer cells

interacting with a specific organ microenvironment was

formalized by Fidler (2002). Consistent with this, in vitro

experiments demonstrated that culture medium is impor-

tant in determining the cells’ membrane characteristics and

signaling, including response to pharmacological agents

(Kusaka et al. 1998; Lee et al. 2006; Yoshida et al. 2006).

Voltage-gated sodium channels (VGSCs) are expressed

commonly in ‘‘excitable’’ cells, such as neurons and mus-

cle cells, as well as in some ‘‘nonexcitable’’ cells, such as

lymphocytes and fibroblasts (reviewed in Diss et al. 2004).
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There is increasing evidence that upregulation of functional

VGSC expression occurs in a variety of human carcinomas

of strong metastatic potential, including prostate cancer

(Laniado et al. 1997; Bennett et al. 2004), lung cancer

(Blandino et al. 1995; Onganer and Djamgoz 2005; Roger

et al. 2007), melanoma (Allen et al. 1997; Nilius et al.

1990), breast cancer (BCa) (Roger et al. 2003; Fraser et al.

2005), mesothelioma (Fulgenzi et al. 2006) and cervical

cancer (Diaz et al. 2007). In the case of BCa, as in other

carcinomas tested, blocking VGSC activity with the highly

specific tetrodotoxin (TTX) inhibited a series of in vitro

cellular behaviors that would be involved in the metastatic

cascade, such as lateral motility, including galvanotaxis,

endocytic membrane activity, transverse migration and

Matrigel invasion (e.g., Djamgoz et al. 2001; Roger et al.

2003; Fraser et al. 2003, 2005). Similar results were

obtained by suppressing the predominant VGSC (neonatal

Nav1.5) expression in BCa by small interfering RNA or a

polyclonal antibody (Brackenbury et al. 2007). These

effects could have clinical relevance since VGSC upregu-

lation has also been seen in vivo: prostate cancer (Diss

et al. 2005), small-cell lung cancer (Onganer et al. 2005)

and BCa (Fraser et al. 2005).

Although the mechanism(s) responsible for the VGSC

upregulation in carcinomas is not known, the biochemical

nature of the cellular environment is likely to be important,

as in the case of other ion channels and receptors (e.g.,

Yoshida et al. 2006; Snopko et al. 2007; Zebedin et al.

2007). An earlier study showed that serum concentration

indeed had a significant effect on VGSC characteristics in

rat prostate cancer cells (Ding and Djamgoz 2004). VGSC

expression generally is dynamic and can be modulated by

various growth factors, cytokines and hormones (e.g., Diss

et al. 2004; Brackenbury and Djamgoz 2006, 2007). In the

present study, as a step toward developing experimental

conditions for identifying specific VGSC controlling

agents, we have investigated the general role of the culture

medium on metastatic cell behaviors (MCBs) and their

control by VGSC activity in strongly metastatic human

BCa MDA-MB-231 cells. As culture conditions, we com-

pared (1) normal medium containing 5% fetal bovine

serum (FBS) with (2) medium in which FBS was substi-

tuted with a commercial ‘‘serum replacement–2’’ (SR-2)

agent. As MCBs, lateral motility, transverse migration and

single-cell adhesion were studied.

Materials and Methods

Cell Culture

MDA-MB-231 cells were grown routinely in Dulbecco’s

modified Eagle medium (DMEM), supplemented with 4 mM

L-glutamine and 5% FBS (Fraser et al. 2005). For general

maintenance, the cells were plated at a density of approxi-

mately 105 in a 10-cm-diameter tissue culture dish with 6 ml

of medium. After 24 h of plating and equilibration, the

medium was changed to one containing (1) 5% FBS (control)

or (2) SR-2 agent, which contains mainly insulin and bovine

serum albumin (BSA). SR-2 agent was prepared according to

the manufacturer’s instructions (Sigma, St. Louis, MO).

Pharmacological Agents

TTX (Alomone Labs, Jerusalem, Israel), stored as a stock

solution (3,132 lM) in culture medium at -20�C, was

defrosted and diluted as required. AG1024 (Sigma), an

inhibitor of insulin/insulin-like growth factor receptor (Par-

rizas et al. 1997; Deutsch et al. 2004), was made up as a stock

solution (3,277 lM) in dimethyl sulfoxide (DMSO) and

diluted in the appropriate medium to give the required

working concentration (0.1–5.0 lM). The final concentration

of DMSO was 0.01–0.1%. Human insulin (Sigma) was

diluted in serum-free DMEM and used at a working

concentration of 100 nM.

MCB Assays

A number of functional assays were performed, as follows.

Similar results were obtained from cells treated pharma-

cologically for 24 or 48 h. In the text, data are given

mainly for 24-h treatments.

Lateral Motility

Lateral motility was assessed by a monolayer wound-heal

assay (Fraser et al. 2003). On day 1, cells were plated at a

density of 5 9 105/dish and allowed to settle for 24 h. On

day 2, ‘‘wounds’’ of 0.6–0.9 mm width were created. For

cells in 5% FBS, 10 lM TTX (in 5% FBS) was added to each

dish. Wound widths were determined immediately afterward

(0 h) by measuring at the 45 fixed intersection points in each

dish. The same sites were remeasured 24 and 48 h afterward,

with a change of medium with the same in between. For

experiments involving SR-2 medium, FBS was replaced

with SR-2 agent on day 2 and the cells were allowed to

reequilibrate for 24 h. On day 3, TTX (10 lM) was applied to

the cells in SR-2 medium and the assays continued as above.

Each treatment had its respective control at all times and was

repeated at least three times, thus giving at least 405 indi-

vidual data points for each condition. Lateral motility was

quantified as ‘‘motility index’’ (MoI), defined as follows:

MoI ¼ 1 � ðWt=W0Þ

where W0 is the initial wound width and Wt is the width of

the wound at time t (24 or 48 h).
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Transverse Migration

Polycarbon ‘‘Transwell’’ membrane filters of 12-lm pore

size (Corning Costar, Cambridge, MA) were inserted in 12-

well plates. Initial plating density was 2 9 105 cells/well,

and the pharmacological treatment strategy was as above,

involving (1) TTX (10 lM), (2) AG1024 (0.5 lM) or (3)

AG1024 (0.5 lM) + TTX (10 lM) and added to the upper

and lower chambers. In a further experiment, 0.1% BSA in

serum-free DMEM was used as a basal medium to study

migration. Following initial plating/conditioning in 5%

FBS and then in 0.1% BSA (24 h each), cells (2 9 105/

well) were treated with (1) TTX (10 lM), (2) insulin

(100 nM) or (3) insulin (100 nM) + TTX (10 lM), while

the lower chamber was filled with 1 ml of 1% FBS medium

supplemented with corresponding drug(s). In each experi-

ment, after 8 h of treatment during the assay, the medium

was removed from both chambers and all the cells in the

top chamber were scraped with swabs. The number of

migrated cells was determined using the MTT method

(Fraser et al. 2005; van de Loosdrecht et al. 1994).

Migration index (MiI) was defined as follows:

MiIð%Þ ¼ ðNm=N0) � 100

where Nm is the number of migrated cells and N0 is the

original cell number.

Adhesion

A recently devised ‘‘single-cell adhesion measurement

apparatus’’ (SCAMA) was used (Palmer et al. 2008).

Suction was applied to individual cells via a glass micro-

pipette (tip sizes 19–22 lm o.d.). The detachment negative

pressure (DNP) was recorded on-line using a digital

manometer. Drug treatment regimes were as above. The

following drugs were tested: (1) TTX (10 lM), (2) AG1024

(0.5 lM) and (3) AG1024 (0.5 lM) + TTX (10 lM). For

each condition, at least 30 healthy-looking single cells

were selected for the adhesion measurements, and cell size

was determined from the average of longest and shortest

diameters. Each treatment was evaluated from at least three

separate experiments, each performed in triplicate. The

average value of the DNP relative to the cell size (DNPR)

was calculated as follows:

DNPR (kPa=lm2) ¼ DNP (kPa)/cell sizeðlm2)

Proliferation and Toxicity

Proliferation and toxicity assays have been described in

detail by Fraser et al. (1999). The pharmacological treat-

ment regimes were as above.

Western Blotting

Cells reconditioned in 0.1% BSA for 24 h were treated

with insulin (100 nM) for 48 h and then lysed in radioim-

munoprecipitation buffer with a 1:100 dilution of protease

inhibitor mixture (Sigma). Protein yield was determined

using a Bradford dye binding assay (Bio-Rad, Richmond,

CA). Samples (60 lg) of protein from different lysates

were resolved against a wide-range color/size marker

(Sigma) by 6% sodium dodecyl sulfate polyacrylamide gel

electrophoresis (Chioni et al. 2005). Proteins were trans-

ferred to a nitrocellulose membrane at 4�C in a buffer

containing 25 nM Tris and 192 mM glycine and run at 30 V

overnight. Nitrocellulose membranes were blocked for 1 h

in 5% (w/v) nonfat dried milk/phosphate-buffered saline

(PBS), followed by a 30-min wash in 2% (w/v) BSA/PBS.

Two primary antibodies were used, diluted in 2% (w/v)

BSA/PBS, to final concentrations, as follows: (1) pan-

VGSC antibody (1 lg/ml; Upstate Biotechnology, Buck-

ingham, UK) and (2) anti-actinin antibody (1 ll/ml,

Sigma). The secondary antibodies were peroxidase-conju-

gated swine-antirabbit, and goat-antimouse (Dako,

Glostrup, Denmark) for (1) and (2), respectively. Blots

were developed using the enhanced chemiluminescence

system (Amersham, Aylesbury, UK) and visualized by

exposure to Super RX 100NF film (Fuji, Tokyo, Japan).

Densitometric analysis was performed using Image-Pro

Plus software (Media Cybernetics, Silver Spring, MD).

Band densities were normalized to anti-actinin as loading

control and averaged from at least three separate

treatments.

Immunocytochemistry and Confocal Microscopy

Cells (5 9 104) were plated onto poly-L-lysine-coated

coverslips in 24-well plates in 5% FBS. On day 2, the

medium was changed to serum-free medium but with

added 0.1% BSA for 24 h. On days 3 and 4, insulin

(100 nM) was applied to the cells with a medium change

with the same in between. On day 5, the cells were fixed in

4% (w/v) paraformaldehyde/PBS for 15 min. Cells were

labeled first with 0.2 mg/ml fluorescein isothiocyanate

(FITC)–conjugated concanavalin A (Sigma) in 5% BSA/

PBS for 30 min as a plasma membrane marker, then per-

meabilized for 10 min with 0.1% (w/v) saponin at room

temperature. Nonspecific binding sites were blocked for

1 h with 5% BSA/PBS, and then the cells were incubated

with the primary antibody (pan-VGSC, 1:100) for 1 h,

followed by the Alexa567-conjugated goat antirabbit sec-

ondary antibody (1:100, Dako) for 1 h. Finally, cells were

washed in distilled H2O and mounted in Vectashield anti-

fading mounting medium (Vector, Burlingame, CA).
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Cells were examined on a Leica (Cambridge, UK) DM

IRBE microscope with a confocal laser scanner (Leica

TCS-NT). FITC and/or Alexa567 were excited with the

488 and 568 nm laser lines, respectively. The images were

captured simultaneously from the two channels using a

confocal pinhole of 226.9 lm (Airy 1).

Digital analysis was performed using LCS Lite software

(Leica), as follows (Brackenbury and Djamgoz 2006):

1. Cell surface protein level was initially quantified using

the ‘‘freeform line profile’’ function drawn around the

cell periphery, judged by conconavalin A staining.

Measurements were taken from 20–30 cells (randomly

chosen) per condition for three repeat treatments.

2. The subcellular distribution of VGSC protein was

determined using the ‘‘straight line profile’’ function

drawn across the cytoplasm avoiding the nucleus.

Signal intensity in the plasma membrane region, set to

cover 1.5 lm inward from the edge of concanavalin A

staining, was compared with cytoplasmic signal

intensity within the central 30% of the line profile.

Measurements were taken from eight or more cells

(randomly chosen) per condition for three repeat

treatments.

Data Analysis

All data were calculated as means ± standard error of the

mean (SEM). Statistical comparisons between data sets were

performed using Student’s t-test or analysis of variance,

followed by Newman-Keuls post hoc analyses, as appro-

priate. Differences were considered statistically significant

at P \ 0.05.

Results

Initial Observations

MDA-MB-231 cells incubated in normal 5% FBS medium

were round and refractive (Fig. 1A). In contrast, MDA-

MB-231 cells grown in SR-2 medium appeared flat and

most had extended pseudopodia (Fig. 1B). Proliferation of

MDA-MB-231 cells was greater by 25 ± 4% in 5% FBS

vs. SR-2 medium (P \ 0.05, n = 4). At the working con-

centrations used, neither TTX (10 lM) nor AG1024

(0.5 lM) had any effect on proliferation in either medium

over 48 h. Cell viability also was not affected by treating

the cells with either 10 lM TTX or 5 lM AG1024. In the

following, we describe results on cellular lateral motility,

transverse migration and adhesion as key examples of

MCB.

Effects of TTX on MDA-MB-231 Cells in FBS

and SR-2 Media

Cellular motility was quantified by two different, comple-

mentary methods and analyzed as follows.

The value of MoI (determined from lateral motility

assays) was 21% higher in 5% FBS compared with SR-2

medium (P \ 0.05, n = 4; Fig. 2A). Treatment with TTX

(10 lM) reduced motility in 5% FBS medium by

9.4 ± 2.1% after 24 h (P \ 0.05, n = 4; Fig. 2A). In

contrast, for cells grown in SR-2 medium, similar treatment

with TTX increased motility by 33 ± 3.1% (P \ 0.05,

n = 4; Fig. 2A).

Transverse migration of MDA-MB-231 cells was stud-

ied using Transwell assays, which excluded any effect on

proliferation. Similar to lateral motility, MiI of MDA-MB-

231 cells grown in 5% FBS was significantly (32 ± 4.2%)

higher than that for the SR-2 medium (P \ 0.05, n = 4;

Fig. 2B). In 5% FBS medium, TTX (10 lM) significantly

reduced MiI by 32 ± 4.6%, from 3.1 ± 0.3% to 2.1 ±

0.3% (P \ 0.05, n = 4; Fig. 2B). In contrast, in SR-2

Fig. 1 Phase-contrast photomicrographs of MDA-MB-231 cells

grown in normal (5% FBS) (A) and SR-2 (B) media for 48 h. The

cells were plated at an initial density of 5 9 104 per dish in FBS, and

the medium was changed as described in ‘‘Materials and Methods.’’

Cells were photographed ‘‘live.’’ Scale bar = 20 lm (A, B)
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medium, TTX (10 lM) significantly increased MiI by

40 ± 3.3%, from 2.1 ± 0.2% to 3.0 ± 0.4% (P \ 0.05,

n = 7; Fig. 2B).

The average values of DNPR for MDA-MB-231 cells

grown in 5% FBS medium and SR-2 medium were

0.26 ± 0.02 and 0.30 ± 0.04 kPa/lm2, respectively

(Fig. 2C). Thus, again, cellular adhesion was higher in the

SR-2 medium by 15% (P \ 0.05, n = 4). In 5% FBS, TTX

increased adhesion by 23%, the DNPR value rising from

0.26 ± 0.01 to 0.32 ± 0.02 kPa/lm2 after 24 h (P \ 0.05,

n = 4). In contrast, TTX reduced the adhesion of cells in

SR-2 medium by 23%, from 0.30 ± 0.02 to 0.23 ± 0.02

kPa/lm2 (p \ 0.05, n = 4; Fig. 2C).

This set of experiments led to two main conclusions: (1)

MDA-MB-231 cell MCBs were less pronounced in SR-2

medium–i.e., lateral motility and transverse migration were

reduced, while adhesion increased–and (2) TTX had

opposite effects on MCBs when cells were incubated in 5%

FBS vs. SR-2 medium. The effects of TTX in 5% FBS

were as reported before (Fraser et al. 2005; Brackenbury

et al. 2007), consistent with VGSC activity enhancing

MCBs. However, the involvement of VGSC activity in the

control of MCB was reversed in SR-2 medium.

Possible Cause of the Anomalous (Reversed) VGSC

Effect

Since the main active component of the SR-2 agent is

insulin, we next investigated whether this could be

responsible for the anomalous effects of TTX.

Endogenous Insulin

Addition of AG1024 (0.5 lM), an inhibitor of insulin

receptor tyrosine kinase, to 5% FBS had no effect on the

migration of MDA-MB-231 cells: MiI = 2.9 ± 0.2%

(control) and 2.8 ± 0.2% (AG1024-treated) (P [ 0.05,

n = 5; Fig. 3A). Furthermore, in the presence of AG1024,
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TTX (10 lM) still decreased migration by 31 ± 5%, from

2.9 ± 0.20% to 2.0 ± 0.16% (P \ 0.05 vs. control, n = 5;

Fig. 3A). In contrast, addition of AG1024 to SR-2 medium

significantly decreased migration (Fig. 3A); this effect was

dose-dependent (not shown), reaching 49 ± 6% inhibition

for 1 lM AG1024. Cotreatment with AG1024

(0.5 lM) + TTX (10 lM) also reduced migration by

28 ± 6%, from 2.3 ± 0.19% to 1.6 ± 0.24% (Fig. 3A).

There was no difference between the effect of the co-

treatment and equimolar AG1024 alone (27 ± 5%

reduction; P [ 0.05, n = 5). There was a similar effect of

AG1024 on adhesion (Fig. 3B). In 5% FBS medium,

AG1024 (0.5 lM) alone had no effect (P [ 0.05, n = 5)

and AG1024 (0.5 lM) + TTX (10 lM) significantly

increased adhesion of the cells by 20 ± 3% (P \ 0.05,

n = 5). In contrast, in SR-2 medium, both AG1024

(0.5 lM) alone and coapplication with TTX (10 lM) sig-

nificantly increased cell adhesion (Fig. 3B). When treated

with AG1024 alone, DNPR increased by 19 ± 4%

(P \ 0.05, n = 5). Coapplication with TTX (10 lM)

increased DNPR by 21 ± 3% (P \ 0.05, n = 5); there was

no difference in the effects of TTX and TTX + AG1024

(P [ 0.05, Fig. 3B). Thus, the anomalous effects of TTX

on migration and adhesion in SR-2 medium were blocked

in the presence of AG1024.

Exogenous Insulin

Further experiments were carried out on MDA-MB-231

cells in basal serum-free medium with added 0.1% BSA

(Fig. 4). In this medium, TTX decreased migration sig-

nificantly, as in normal FBS medium. Application of

exogenous insulin (100 nM) in BSA medium increased

migration by 44% (P \ 0.05, n = 6). TTX (10 lM) coap-

plied with insulin (100 nM) further increased MiI by 35%

(P \ 0.05 vs. TTX alone, n = 6; Fig. 4). In conclusion, (1)

insulin enhanced MCBs, (2) the contribution of VGSC

activity to MCB enhancement was reversed in insulin-

containing media (i.e., SR-2 medium or BSA + insulin

medium) and (3) blocking endogenous insulin receptor

activity in SR-2 medium eliminated the VGSC role. These

data, taken together, suggest that insulin could upregulate

functional VGSC expression. This possibility was investi-

gated as follows.
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Fig. 5 Effects of exogenous insulin (100 nM, applied for 24 h) on

total and subcellular distribution of VGSC protein levels. (A) Western

blot with pan-VGSC and actinin antibodies. (B) Relative levels of

total VGSC protein (from A), normalized to the actinin control.

Typical confocal images of control cells (C) and cells treated with

insulin for 48 h (D), double-labeled with pan-VGSC antibody (red)

and concanavalin A plasma membrane marker (green). Scale bar in
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indicate examples of cross-sectional images taken. (E, F) Profile of

digital images of subcellular VGSC immunofluorescence of control

(E) and insulin-treated (F) cells. AU, arbitrary unit. Arrows, plasma

membrane level; dotted lines, cytosolic levels (both drawn by eye).

(G) Summary of data from (E) and (F) analyzed as described in
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means ± SEM. *Statistically significant difference at P \ 0.05 (com-

pared with the respective, adjacent control)
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Effect of Insulin on VGSC Protein Expression

Western blot with a pan-VGSC a-subunit antibody

revealed that treatment with insulin (100 nM) for up to 48 h

did not affect the total VGSC protein level (Fig. 5A, B).

However, quantification of peripheral VGSC expression by

the freeform line profile analysis suggested that insulin

caused a 38% increase in the plasma membrane VGSC

level (P \ 0.05, n = 70). Confocal immunocytochemistry

and digital image analysis were used also to assess the

effect of insulin on the subcellular distribution of VGSC

protein. The profile of VGSC immunoreactivity along the

cell cross section changed following insulin treatment

(Fig. 5C–G). Again, insulin increased the level of VGSC

protein in the plasma membrane region by some 41%, from

5.6 ± 0.8% to 7.9 ± 0.9% of total cross-sectional immu-

nofluorescence (P \ 0.05, n = 25 for each; Fig. 5G).

There was an opposite effect on the intracellular region:

Insulin decreased it by some 39%, the VGSC immunoflu-

orescence falling from 36.5 ± 2.0% to 22.2 ± 0.6%

(P \ 0.05, n = 25; Fig. 5G). It was concluded that insulin

upregulated VGSC expression in the plasma membrane by

changing the balance of the protein recycling in favor of

externalization.

Discussion

In summary, the following results were obtained for the

MDA-MB-231 cell model of metastatic BCa. (1) The cells’

morphology and MCBs (lateral motility, transverse

migration and adhesion) were indicative of a more meta-

static (including proliferative) state in FBS compared with

SR-2 medium. (2) VGSC activity enhanced MCBs in 5%

FBS medium but was inhibitory in SR-2 medium. (3)

Inhibiting endogenous insulin receptor activity blocked the

VGSC effects in SR-2 medium. In medium containing

exogenous insulin, again, the role of VGSC was reversed.

These results were consistent with insulin being the main

cause of the anomalous (reversed) involvement of VGSC

activity in control of MDA-MB-231 cells’ metastatic

behavior (lateral motility, transverse migration and adhe-

sion) in SR-2 medium. (4) Application of insulin in BSA

medium increased cellular migration and concurrently

induced externalization of VGSC protein. Overall, these

results supported the general notion that MCB and its

control are influenced critically by the chemical constitu-

tion of the cellular environment.

Possible Effects of Insulin on VGSC

Insulin has long been known to exert pleiotropic effects on

the development and maintenance of the nervous system by

regulating expression of various genes, including VGSCs

(e.g., de Pablo and de la Rosa 1995; Yamamoto et al.

1996). Our study showed that insulin could have a signif-

icant effect upon the VGSC control of MCBs in MDA-MB-

231 cells, which possess insulin receptors (Papa et al. 1997;

Zhang et al. 2007). In SR-2 medium (insulin + BSA),

VGSC activity decreased migration; this effect was lost

after blocking endogenous insulin receptor activity. Simi-

larly, in serum-free medium with 0.1% BSA, insulin

increased migration and insulin + TTX increased it fur-

ther. This suggested a possible interdependence of insulin

and VGSC activity. Previous studies have shown that

insulin may play a role in regulating functional VGSC

expression. Insulin upregulated VGSC expression in

bovine adrenal chromaffin cells by enhancing membrane

trafficking/protein synthesis rather than increasing the

VGSCa mRNA level (Yamamoto et al. 1996; Wada et al.

2004). Insulin also facilitated the induction of Na+ chan-

nels in plasma membrane of Xenopus laevis oocytes

(Charpentier 2005). It is not known if insulin-induced

phosphorylation might also be a factor (Ahern et al. 2005;

Hirose et al. 2004). The fact that TTX had no effect on

MCBs in the presence of AG1024 would imply that, in

addition, insulin could reduce the coupling of VGSC to the

MCB machinery (Fig. 6). Such a secondary effect could

involve the cytoskeleton, which is well known to be

modulated by insulin (e.g., Berfield et al. 1997; Tobe et al.

2003; Berres et al. 2006). Furthermore, Nav1.5, the pre-

dominant VGSC (neonatal splice variant) present in MDA-

MB-231 cells, is likely to be associated with a range of

cytoskeletal elements (Ou et al. 2003; Herfst et al. 2004; D.

Shao, K. Okuse and M. B. A. Djamgoz, unpublished data).

Control of Cellular Migration by VGSC Activity

VGSC upregulation occurs in strongly metastatic cells of

human BCa (Roger et al. 2003; Fraser et al. 2005). Inva-

siveness of MDA-MB-231 cells was potentiated by VGSC

activity, and a reduction of 30–49% was observed after

Σ MCBs

 a 

 b VGSC

Non-VGSC

Fig. 6 A conceptual scheme for control of MCBs by VGSC-

dependent and non-VGSC mechanisms. In this model, we assume

that basal control of MCBs occurs via conventional mechanisms not

involving VGSC activity. However, acquisition of strong metastatic

potential by the cells is accompanied by VGSC expression, and the

two control mechanisms summate (indicated by R) to enhance MCBs.

a and b indicate couplers that connect the control mechanisms to the

MCB machinery. Importantly, VGSC-dependent and non-VGSC

mechanisms can interact (indicated by two-way arrow)
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treatment with TTX in 5% FBS; Transwell migration was

reduced by 52% (Roger et al. 2003; Fraser et al. 2005). The

present findings on MDA-MB-231 human BCa cells bathed

in normal (5% FBS) medium are in general agreement with

these data. On the other hand, in the presence of insulin, the

contribution of VGSC activity to MCBs reversed and TTX

increased migration. Thus, it would appear that VGSC

activity can accelerate or decelerate migration, depending

upon the chemical environment of the metastasizing cell.

Such dual control would constitute a servo system appro-

priate for the highly regulated and dynamic nature of the

metastatic cascade. Developing neurons were also shown

to possess such a characteristic (Guan et al. 2007), and it

has been noted that cancer cell invasion has some of the

hallmarks of normal neuronal development (Liotta and

Clair, 2000).

The mechanisms of VGSC involvement in cellular

motility/cytoskeleton broadly could be as follows (My-

cielska and Djamgoz 2004).

Direct

Nav1.5 is one of only two VGSCs that has PDZ domains

that could enable cytoskeletal interactions (Gavillet et al.

2006). Some 28 proteins were identified as associated with

the VGSC (Nav1.8) intracellular domain, including actin

and inositol polyphosphate 5-phosphatase (Malik-Hall

et al. 2003; Ratcliffe et al. 2000). It is also possible that

VGSC b-subunit(s) facilitates VGSC–cytoskeleton and

VGSC–extracellular matrix interactions (Isom 2002), and

ankyrin may also participate (Komada and Soriano 2002).

Indirect

Indirect effects could occur via ionic changes. For exam-

ple, Na+ influx through VGSCs could increase the

intracellular Ca2+ concentration locally by inhibiting or

even reversing Na+ –Ca2+ exchange (Lemos et al. 2007)

and/or by altering the release/uptake of Ca2+ from intra-

cellular stores by deregulation of intracellular pH

(Ishibashi et al. 1999). Furthermore, the rise in intracellular

Na+ influx could activate a variety of enzymes, such as

Na+/K+ -ATPase (Page and Di Cera 2006) and adenylate

cyclase/protein kinase A (Cooper et al. 1998; Brackenbury

and Djamgoz 2006); in particular, protein kinase A acti-

vation may, in turn, lead to phosphorylation of cytoskeletal

components (e.g., Han and Rubin 1996; Liu et al. 2001).

Conclusions

MCBs of MDA-MB-231 cells and the mode of their control

by VGSC activity were found to be influenced significantly

by the biochemical constitution of the cellular environ-

ment. In this regard alone, therefore, extreme care must be

taken in adopting commercially available agents for serum

replacement. Insulin could have a significant effect on

VGSC expression/activity and the consequent control of

MCBs. Further work is required to elucidate how these

results might relate to the pathophysiological role and

clinical potential of insulin/insulin-like growth factor in

BCa (e.g., Frasca et al. 2003; Perks and Holly 2003; Zhang

and Yee 2004).
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